

Neoxen QX Framework

Developer's Guide

© Neoxen Systems

Table of Contents

Table of Contents ... 2

1 About This Guide .. 2

1.1 Audience... 2

1.2 Organization ... 2

1.3 Typographic Conventions .. 3

1.4 Terms and Concepts ... 4

1.4.1 Abbreviations ... 4

1.4.2 Terminology ... 4

1.5 Related Documentation .. 5

2 Introduction ... 6

2.1 Introduction to Neoxen QX Framework ... 6

2.2 Purpose of This Guide ... 7

3 Background ... 8

3.1 Why Do We Need Guidelines and Standards? 8

3.2 How Neoxen QX Framework and this Guide Can Help 9

4 Designing Robust Software Solutions .. 11

4.1 Overview .. 11

4.2 Robustness ... 11

4.2.1 How to Plan and Verify Robustness? 12

4.2.2 Stress Tolerance ... 12

4.3 Adaptability... 13

4.3.1 Estimating Required Adaptability .. 13

4.3.2 Keeping the Focus and Cost-efficiency 14

4.3.3 Adaptive Components and ROI ... 14

4.4 Security .. 15

4.5 Performance .. 16

4.5.1 Optimizing Network Traffic .. 16

4.5.2 Communication Modes .. 17

4.5.3 Load Balancing ... 18

4.5.4 Optimizing Connections to External Systems 19

4.5.5 Other Performance Aspects .. 20

4.6 Storing History Information ... 22

4.7 Changing the Foundation .. 23

4.7.1 Third Party Components .. 23

5 Creating a Professional Development Process 24

5.1 Development Environment .. 24

5.1.1 Microsoft® Windows®... 24

5.1.2 Linux/UNIX .. 24

5.2 Software Builds ... 24

5.2.1 Configuration Management .. 25

5.2.2 Build Machine... 25

5.2.3 Build Process.. 25

5.2.4 Build Tools ... 26

6 Source Code Tree Recommendations .. 28

6.1 Overview .. 28

6.2 Configuration Management ... 29

© Neoxen Systems

6.3 Workspace Settings in Visual Studio 2015 30

6.3.1 C/C++ Settings .. 31

6.3.2 Linker Settings ... 31

6.3.3 Resources Settings ... 31

7 General Formatting Guidelines ... 32

7.1 Source Code Readability ... 32

7.1.1 Tabs and Spaces... 32

7.1.2 Positioning of Braces ... 33

7.1.3 Line Length in the Source Files .. 34

7.1.4 Size of a Logic Block, a Function and a File 34

7.2 Function Prototypes ... 34

7.3 Calling Functions with Multiple Parameters 35

7.4 Declaring Variables .. 36

8 General Coding Guidelines... 37

8.1 Using Global Variables .. 37

8.1.1 Multithreading .. 37

8.1.2 Multiple Processors ... 37

8.1.3 Naming Convention .. 38

8.2 Using Static Variables... 38

8.2.1 Multithreading and Multiple Processors 38

8.3 Initializing Variables ... 39

8.3.1 Using Constants ... 39

8.3.2 Reusing Constants .. 39

8.4 Using Strings... 40

8.4.1 Standard C Library Functions ... 40

8.4.2 Localization Support.. 40

8.4.3 Pointer Arithmetic ... 40

8.5 Return Values .. 41

8.6 Error Handling ... 42

8.6.1 Validating Parameters ... 43

8.6.2 Validating Pointers .. 44

8.6.3 Structured Error Handling (SEH)... 45

8.7 Using Macros ... 46

8.8 Memory Management ... 47

8.8.1 Desktop Applications ... 47

8.8.2 System Software .. 47

8.8.3 General Recommendations .. 48

8.8.4 Storage Allocation .. 48

9 Compiler and Linker Warnings ... 50

9.1 Using Explicit Typecasting .. 50

9.2 Using VOID Parameter with C Compiler .. 50

9.3 Using #pragma Directives... 51

10 Using Resource Files ... 52

10.1 Resource Symbols .. 52

10.2 Version Information ... 52

10.2.1 Traditional Approach ... 52

10.2.2 Neoxen QX Framework Approach .. 52

11 Commenting Source Code ... 53

11.1 What to Comment? .. 53

© Neoxen Systems

11.1.1 File and Block Comments .. 53

11.1.2 Implementation Comments .. 54

12 Naming Convention .. 55

12.1 Hungarian Notation .. 55

12.1.1 Simple Data Types .. 55

12.1.2 Complex Data Types ... 56

12.1.3 Using Data Type Definitions ... 56

12.2 Naming String Pointers ... 57

12.3 Naming Functions and Methods ... 57

12.3.1 Using Module Prefixes ... 57

12.3.2 Using Logical Groups ... 58

12.4 Naming Constants .. 58

13 Exporting Functions .. 59

13.1 General Guidelines ... 59

13.2 How to Export? .. 59

13.2.1 Using Microsoft Specific Storage-class Modifiers 59

13.2.2 Using Module Definition Files ... 60

13.2.3 Using /EXPORT Specification .. 60

13.2.4 Calling Conventions for Exported Functions 61

13.3 Avoiding Multiple Header Inclusion .. 62

14 Solving Problems .. 63

14.1 Switching from Debug to Release Build .. 63

14.1.1 Heap Layout .. 64

14.1.2 Compilation ... 64

14.1.3 Code Optimization .. 65

14.1.4 Uninitialized Pointers .. 66

Index .. 67

APPENDIX I: Data Types ... 69

APPENDIX II: Data Type Prefixes ... 70

About This Guide

2 (74)

© Neoxen Systems

1 About This Guide

There are plenty of good guides and documents describing the design
principles for creating sound and safe desktop applications.

Unfortunately, there are less good guides to describe the practical
principles for designing well performing, robust and maintainable
system components and distributed system applications.

This Developer's Guide describes the architectural and development
guidelines, instructions, recommendations and usage information for
the Neoxen QX Framework development platform.

This chapter provides basic information about this guide, such as the
organization of the document, its intended audience and the
typographic conventions and terminology used. It also lists other
documents related to the topic.

1.1 Audience

This document is intended for software architects and developers
utilizing Neoxen QX Framework. This guide assumes you are familiar
with the basic concepts of client-server or multi-tier programming, C-
style function calls, databases and networks.

1.2 Organization

This document is organized as follows

Chapter Contents

Chapter 1 Describes the purpose of the document. It also explains the
terminology and typographic conventions used in the
document. A list of related documents can also be found in
this chapter.

Chapter 2 Gives the introduction and overview to Neoxen QX Framework.

Chapter 3 Describes the background of Neoxen QX Framework.

Chapter 4 Describes the general guidelines for designing robust system
software components and distributed business applications.

Chapter 5 Describes how to establish professional development
processes.

Chapter 6 Describes the Neoxen QX Framework source code tree
structure.

About This Guide

 3 (74)

© Neoxen Systems

Chapter Contents

Chapter 7 Describes the general recommendations for source code
formatting.

Chapter 8 Describes the general programming guidelines.

Chapter 9 Describes the basic principles regarding compiler and linker
warnings.

Chapter 10 Describes the usage of resource files.

Chapter 11 Describes the general source code commenting
recommendations.

Chapter 12 Describes the recommended naming conventions.

Chapter 13 Describes the different approaches to exporting functions.

Chapter 14 Describes typical problems encountered when switching from
debug to release mode.

1.3 Typographic Conventions

The following text styles identify special information used in this
guide

Convention Description

Italics Italicized Text is used to call attention to cross-references.

Courier Screen messages as well as literal user input, such as
selections, commands, parameters and fields are written in
Courier font.

Note: Important notes are written in this style.

Caution: Cautions are written in this style.

About This Guide

4 (74)

© Neoxen Systems

1.4 Terms and Concepts

The following abbreviations, terms and concepts are used in the
document

1.4.1 Abbreviations

Abbreviation Meaning, definition

CMS Configuration Management System

CVS Concurrent Versions System

HTTP Hyper Text Transfer Protocol

JRE Java Runtime Environment

LAN Local Area Network

MFC Microsoft Foundation Classes

ROI Return of Investment

SEH Structured Exception Handling

SQL Structured Query Language

SVN Subversion

TFS Microsoft Team Foundation Server

WAN Wide Area Network

1.4.2 Terminology

Term, Concept Meaning, definition

Build Process Fully documented process where the sources are
stamped with build number, downloaded from CMS and
typically a complete product is created with delivery
media contents.

Build Engine Fully documented and configurable software “engine”
consisting of make-files, scripts and utilities to enable
automated Build Process.

Build Machine Computer with Clean Environment where the Build
Engine produces the final product

Build Master Nickname for the person in charge of the Build Engine

Clean Environment Fully documented operating environment in a Build
Machine containing only those components and software
required for the Build Engine to execute.

http://en.wikipedia.org/wiki/Configuration_management
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/JRE
http://en.wikipedia.org/wiki/LAN
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
http://en.wikipedia.org/wiki/Return_on_Investment
http://en.wikipedia.org/wiki/Structured_Exception_Handling
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Apache_Subversion
http://en.wikipedia.org/wiki/Team_Foundation_Server
http://en.wikipedia.org/wiki/Wide_area_network

About This Guide

 5 (74)

© Neoxen Systems

1.5 Related Documentation

The following documents give you additional information

Document

[1] Neoxen Modus Methodology - Development Guide

[2] Neoxen Developer Resources Online

Introduction

6 (74)

© Neoxen Systems

2 Introduction

2.1 Introduction to Neoxen

QX Framework

Neoxen QX Framework is a 32/64-bit System Software Development
Kit (SDK). It is the core of Neoxen QX technology and the foundation
of all Neoxen products. It is a powerful SDK for distributed system
software and multi-tier business and communications applications for
multiple client and server operating systems. It scales from smart
hand-held devices to clustered server environments.

Together with the included Visual Modus QX SDK it provides
integration capabilities to any Information Management solutions
supporting ODMA, WebDav or any of the standard TCP protocols.
Additionally, it allows deep integration with Microsoft SharePoint
2010/2013/2016 and Bentley ProjectWise.

Neoxen QX Framework is designed for project groups, systems
integrators and independent software vendors for rapid system
software development. Also Neoxen Professional Services uses it as a
foundation technology in all the customer projects requiring a robust,
fast and efficient platform.

The origin of Neoxen QX Framework was in the evolving need to
speed up development cycle of projects requiring robust
communications interfaces. These design principles and visions have
guided the development ever since. Globalization and an increasingly
versatile infrastructure emphasize the need for a small, fast and
highly flexible development platform even further.

Introduction

 7 (74)

© Neoxen Systems

2.2 Purpose of This Guide

The purpose of this guide is to illustrate the architectural software
design guidelines and development practices recommended to be
used with Neoxen QX Framework. The goal of this document is to
define:

 General architectural design guidelines

 General development guidelines

 Guidelines for Neoxen QX Framework API usage

Some of the recommendations are not intended as strict rules.
Common sense and a practical approach to everyday programming
concepts can override these guidelines when necessary. However, it is
strongly recommended that the exceptions should be well commented
within the source code.

This Developer's Guide partially follows the Microsoft Windows SDK
development recommendations together with some cross-platform
requirements and it is targeted for C/C++ programming. However,
the general guidelines are applicable to other languages with some
modifications.

Background

8 (74)

© Neoxen Systems

3 Background

3.1 Why Do We Need Guidelines and Standards?

When business applications are produced for customers, the
possibility to offer a short and efficient project cycle with flexible and
robust software results is a true winning combination. We need to
standardize our processes, reduce redundant work and increase
software re-usability and quality. We need to earn the competitive
advantage and customer satisfaction by “doing the things right”.

Architecture and design are the most important areas in successful
software development. However, readability and maintainability of the
source code are crucial parts in this goal as well.

The “hidden costs” in professional software development are some of
the most important categories of expenses to minimize. This can be
achieved only by creating, understanding and following standardized
procedures and practices.

Unprofessional coding practices and implementation can ruin even the
most intelligent design. Similarly, even the most systematic
programming approaches cannot save poor design. In order to
succeed in the professional software industry or in professional
services we need standards and guidelines.

Creating and further developing professional procedures is a
continuous task. Every software architect and engineer should
participate in the process by following the common guidelines, which
should cover at least:

 Solution guidelines and principles

 Development tools, their usage and recommended versions

 Configuration Management and Build Process

 Source code structure

 Coding practices

 Source formatting, commenting and documentation

 Declarations, calling and naming conventions

 Error handling and parameter checking

Background

 9 (74)

© Neoxen Systems

Project management, product management and quality assurance are
the other important areas, which closely relate to development
practices. Also customer care services, technical support and bug
tracking are key elements. However, these areas are not covered in
this Developer's Guide. They deserve their own guides.

3.2 How Neoxen QX Framework and this Guide Can Help

Neoxen QX Framework is highly flexible and customizable allowing as
much control over the architectural layers as required. It permits
developers and integrators to easily leverage the full power of Neoxen
technology for their own benefit. By design, application development
with Neoxen QX Framework allows for subsequent access to all the
technologies and platforms supported by Microsoft and many others.
The users of the platform are not forced to stick to a single solution or
technology.

Neoxen technology specifically offers the following system
development benefits:

 The modular architecture integrates easily with existing
applications and services

 Neoxen technology works with many different commonly used
technologies from multiple manufacturers

 Multi-layered architecture is extendable and customizable with
all layers accessible to developers

Using Neoxen QX Framework as the main development platform also
has a positive impact on development and maintenance costs
reducing the ‘hidden costs’, whether it is implemented with a single
application or within a network of different solutions. Following are
the key areas where Neoxen QX Framework has a direct impact on
overall project cost and effectiveness:

Save in Development Costs: Neoxen QX Framework is easy to learn
and easy to use and the licensing is flexible and competitive. The
resulting binaries are royalty-free. Neoxen QX Framework contains
a consistent interface with lots of extensively tested modules.
Therefore less coding is required to achieve the targets and the
testing efforts can be concentrated on the business level
functionality.

Background

10 (74)

© Neoxen Systems

Build Better Solutions: As you save in development costs, you will
also build better solutions utilizing the extensively tested and
proven foundation. Less bugs, shorter testing cycles and shorter
project completion will raise customer satisfaction and give a
competitive advantage.

Standardize the Processes: Taking advantage of the guidelines
drawn in this Developer's Guide you can refine and adjust your
processes and increase efficiency.

Save in Support Costs: When there is a need to upgrade or modify
your solution, the developers can typically concentrate on just the
business level. Neoxen QX Framework is backwards compatible. If
there is a need to upgrade the platform, the existing solutions
remain fully functional and can even take advantage of some of the
new features without re-coding.

One of the additional benefits of Neoxen QX Framework is that its
usage is not restricted to any particular programming language or
development environment. The core technology is written in low-level
C language with C++ layer for optimal performance and inter-
operability. Therefore, all the functionality is accessible from any
programming language capable of calling C-style library functions (C,
C++, C#, most scripting and macro languages, Java, etc.).

The whole code base of Neoxen QX Framework has been fully
internationalized. Therefore the business applications created can be
easily localized to any language area, including the Far East.

Designing Robust Software Solutions

 11 (74)

© Neoxen Systems

4 Designing Robust Software Solutions

4.1 Overview

There are some fundamental differences in the requirements of
designing system components and multi-tier business solutions if
compared to producing desktop applications.

Most of the system software requirements are common for all
distributed systems regardless of their intended purpose. Technical
requirements for servers and other system components are much
more demanding than for desktop applications. Servers may typically
need to stay up and running 24 hours a day, seven days a week, with
quite challenging up-time requirements.

Desktop applications tend to have quite a short lifetime. Typically,
they are used only certain limited amount of time before they are
closed. Therefore, their design requirements are easier to manage and
the design principles are easier to adopt.

It is quite common, that the system components need to be capable
of managing very large amounts of data, reliably deal with heavy
network traffic and efficiently handle multiple concurrent connections.
These requirements set additional challenges for both design and
implementation.

Neoxen QX Framework is designed from ground up to allow robust
development of such software. This guide draws some basic
guidelines to assist you in taking full advantage of the features and
functionality implemented in this platform.

4.2 Robustness

Robustness and reliability should be common requirements for any
software components. For system components this requirement has
an additional emphasis. If a server component is not able to run
reliably, it may cause unacceptable inconveniences to the using
organization and increase the overall expenses.

Designing Robust Software Solutions

12 (74)

© Neoxen Systems

4.2.1 How to Plan and Verify Robustness?

Software robustness is one of the most complicated areas to design
and furthermore to verify. In a large software product, the number of
possible combinations that should be taken into account and verify,
may grow extensively. Without adequate testing and systematic
approach, it is almost impossible to make any assumptions on a
product’s final robustness. This kind of planning and verification
requires close communication between development groups and the
testing teams.

If system software contains third party components, it may
complicate proper design of reliability as well as testing. As far as
robustness is concerned, the amount of unknown factors rises. These
unknown factors may lead to a situation where not all the important
combinations are fully understood. Also it may lead to a situation
where test team may use more time than necessary to verify the
‘combinations’ that may actually use the very same internal workflow.

Some of the factors, which need to be taken into account, when
planning for system software reliability:

 Supported platforms (Windows versions, Linux versions, other
operating systems)

 Supported databases, their versions and drivers

 Supported communications features, protocol stack versions,
etc.

 Supported Web Servers and/or Browsers and/or JREs if involved

 Possible ‘adapters’ and/or interfaces (for example Browsers /
Web Services / native layers if supported, etc.)

 All other aspects that might cause software to behave
differently than in the already tested combinations

4.2.2 Stress Tolerance

Estimating stress tolerance is one of the most critical design aspects.
It is typically rather easy to get acceptable reliability results when the
system component is running with quite a small load and perhaps
with quite few concurrent users. Stress tolerance, capability of
managing arbitrary load peaks and constant heavy workload is an
aspect that has to be taken into account both in system design and in
testing the software robustness.

Designing Robust Software Solutions

 13 (74)

© Neoxen Systems

There are quite a number of requirements to be considered, when
planning the stress tolerance:

 Number of concurrent connections to other systems (database
connections, stream socket connections, etc.)

 Number of concurrent client connections (or number of hits)

 Number of queued requests in each possible request queue

 Amount of data stored in memory at any one time

 Number of involved threads and processes

 Amount of other system resources in use

 Behavior under heavy system load caused by other applications

4.3 Adaptability

Globalization and an increasingly versatile infrastructure requires a
quite a lot of adaptability from modern business applications and
system software components. This kind of flexibility is needed for
adapting the solution to varying environments with a minimum
amount of effort and expense. The installation sites are different,
customers have different workflows, network and server
configurations and the number of concurrent users and the amount of
expected workload may vary.

4.3.1 Estimating Required Adaptability

A good approach to estimating the required adaptability is to specify
the minimum requirements the software should fulfill:

 What kind of networks and work practices should be supported?

 How large installations should be estimated?

 What platforms and databases should be supported in the
beginning?

 Should there be an option to extend this support in the future?

Before starting any architectural design or implementation, it should
be decided what are the basic requirements to be supported. Also
there should be a view of at least some of the possible future needs.
It might be wise to take into account some ‘requirements-to-come’
options during the design and implementation phases.

Designing Robust Software Solutions

14 (74)

© Neoxen Systems

Should any of these or related requirements become important in the
future, it might be relatively painless to extend the software to cover
the arising needs without extensively changing the foundation
architecture itself. Otherwise extending the software to cover
unexpected requirements might be very tedious and costly. In the
worst scenario this might lead to a partial or even complete redesign
of the foundation architecture.

However, if unexpected functionality is requested for a reason or
another, additional efforts will be needed in quality assurance. When
more features are added or changed and the more they require
changes in the foundation architecture, the more extensively the
number of untested combinations grows.

In product development the main emphasis is typically on the next
product release. If the possible future requirements are considered
appropriately at the same time, the forthcoming release cycles might
become much more economical to design, implement and test.

4.3.2 Keeping the Focus and Cost-efficiency

When adaptability is designed, it is always good to keep feet on the
ground and use common sense. There is not a piece of software which
can handle all the possible tasks and requirements efficiently. By
keeping the business orientation in mind it is possible to be prepared
to ‘might-be-important-in-the-future’ requirements with adaptive
components without sacrificing the overall focus and cost-efficiency.

4.3.3 Adaptive Components and ROI

The adaptability design in the component level typically needs a more
specific technical analysis:

 How components should be designed and implemented to best
serve the minimal adaptability requirements?

 How easy it might be to leave the architecture more open and
more configurable than required?

 Etc.

Many aspects should be considered, but one thing is quite obvious. In
most cases it takes almost the same time to develop a generic
solution than just a fixed design. An approach favoring open and
adaptive solutions might save a lot of time and expenses in future
development.

Designing Robust Software Solutions

 15 (74)

© Neoxen Systems

Adaptive components might be used in the future by the same system
they were originally designed for, but they may also open new
business opportunities and therefore increase the return of
investment (ROI).

Shortly, adaptive components may address two different goals:

 To adapt the product to varying environment

 To decrease the design, development and testing costs of future
projects

4.4 Security

Previously in closed local area networks (LAN) security considerations
were not such an issue. Today when all systems should be in a wide
area network (WAN), Internet compliant security is a cause of
constant headache.

Even though some laws may set some of the requirements, most of
the security considerations relate to confidentiality and privacy. It is
important to identify what data is confidential or private and where all
the software components might be located. We need to analyze which
data transfers need security and by what means security should be
provided.

Some years ago it was quite common that the original specifications
came with an assumption that some system components were located
in a closed and secure network area. Typically communication
between those components was expected to be trusted and therefore
fully secure.

Today these kinds of assumptions cannot be made. By default the
component locations should be transparent so that the communication
needs to be secured by the software designers.

Designing Robust Software Solutions

16 (74)

© Neoxen Systems

4.5 Performance

4.5.1 Optimizing Network Traffic

If the performance of a business system is just fine in a local area
network, it does not mean that the software still meets modern
requirements. Companies have quite diverse networks these days and
many organizations are geographically distributed. It is more and
more common to work from home or use some temporary locations,
such as hotels, airports etc. This sets many new requirements and
expectations for the software.

Network traffic optimization is one of the ‘new approaches’. For the
younger generation of developers this may sound ‘new’. For a
seasoned programmer this may just be a return to good old days.

Optimizing network traffic may become quite critical when the system
runs in a geographically distributed environment. Transporting data
between two or more computers may from time to time be quite time
consuming. Establishing a connection might take some time as well.
It also may become important to ensure that a client does not lose
the connection too frequently. The time needed to solve host
addresses or route the packages, and network bandwidth in general,
are all issues that have their impact in the performance and user
experience. The performance might vary substantially in different
environments.

There are lots of investigations and studies on what kind of
responsiveness users find acceptable and what not. Respecting the
user experiences and designing the software to meet those, may give
strong competitive advantage. Network traffic optimization is one of
the cornerstones in achieving this.

Designing Robust Software Solutions

 17 (74)

© Neoxen Systems

4.5.2 Communication Modes

There are two different basic concepts for connectivity, or rather
communication modes. All distributed solutions use some sort of a
variation of these

 Synchronous Communication Mode

 Asynchronous Communication Mode

Synchronous communication mode is quite often referred to as
‘Connection Oriented Communication’ and asynchronous mode is
referred to as ‘Task Oriented Communication’. Even though they are
often used synonymously, that is not necessarily the case.

Synchronous Mode

Many traditional solutions relying on databases are synchronous by
default. User connects to a database in the beginning of a session and
the connection stays open until the application closes, or if a timeout
value is reached without activity.

In practice this means that the client opens the connection to the
server, executes desired operations while the connection is open and
then closes the connection. In this case the connection has some kind
of state maintained and it can be considered persistent.

Synchronous mode is typically used in local area networks.
Connection persistence provides the best responsiveness and
performance, but typically requires quite a lot of bandwidth.

Asynchronous Mode

Web applications and many messaging solutions are typically, but not
exclusively, asynchronous. A typical example is e-mail. When e-mail
is sent, the connection is opened for the execution period of the
sending task and then closed. The sender does not have any certainty
if the recipient ever received the message, unless the server politely
informs so later on.

The used application level protocols are often stateless, such as HTTP
in typical web applications. For the original purposes this is just
perfect. However, it is more and more common to use asynchronous
communication for traditional business purposes. In such cases there
is a need to emulate connection persistence. Usually a persistent
connection is needed to get the acceptable performance.

Designing Robust Software Solutions

18 (74)

© Neoxen Systems

What methods can be used to get ‘persistent’ connections in
asynchronous communication depends on the platforms that should
be supported. One commonly used mechanism is to use cookies to
store connection information. One possibility is to use features
provided by other parties involved (like web server, web server
version, etc.). This second approach differs a lot depending on what
third party components are involved.

Architectural Requirements

From the architectural point of view these modes have different
requirements for the software. Also the purpose of the software may
dictate which mode to prefer.

However, it is not impossible to design the software to support both
communication modes, they are not necessarily exclusive. If both
aspects are properly taken into account in design and the architecture
layered appropriately, software can enjoy the benefits of both modes
with reasonable efforts. This approach may open completely new
opportunities for the software and cause significant savings in future
development.

4.5.3 Load Balancing

When large installations are concerned, horizontal scalability may
have a significant role. It may become important to support multiple
concurrent servers. Some servers may have identical roles and some
servers may specialize in some specific tasks. This concept is typically
referred to as Load Balancing. It might be that one host can run
multiple server instances and also there might be multiple hosts
involved.

Load Balancing can mean that there are multiple identical servers and
one separate component takes care of delivering incoming requests to
the servers in a way that the load on each server is feasible.

One typical approach is to deliver each incoming request to the server
having the lowest load at that time. Another approach is server
weighting according to their capacity. Some servers can efficiently
manage heavier load than some other servers. Typically there is some
kind of a configuration schema to specify the strengths or capabilities
of the servers, or the balancing mechanism can even be fully
automatic based on predefined algorithms.

Designing Robust Software Solutions

 19 (74)

© Neoxen Systems

Load balancing can be understood in various ways. For instance,
manual load balancing might mean that there are no software
components to handle balancing, but there are still multiple servers
participating in the process. Alternatively, there might be some kind
of configuration to specify which clients connect to which servers, or
there might be hardware based load balancing, etc.

Furthermore, there might be multiple areas that may need load
balancing. There might be multiple database connection needed for a
session, or multiple connections to other systems. Some connections
might be bound to a session and some operations might be handled
by separate load balancing to a related target.

4.5.4 Optimizing Connections to External Systems

Very often server components need connections to external systems,
such as databases. Design of these connections naturally affects
performance. One basic guideline for database connections is to use
as minimal a number of SQL statements as possible.
Architecture and general design of the connecting components may
have a dramatic effect on overall performance. It can be seen too
often that the modules involved in request processing are well
designed from an object model point of view, but the design
remarkably slows down system performance.

One of the most common examples is a situation where two or more
methods in the same method chain separately execute the same SQL
statement to access the same data. There is often a tremendous
performance advantage if the component is designed so that the
methods can use the same already fetched data.

Connection Pooling and Sharing

The principles mentioned above are usable for connecting with many
kinds of external systems, such as systems that are accessed with
stream sockets. Some design aspects affecting the performance
should be considered as well. For instance, how the connections can
be pooled, shared etc. and when the connection should be established
and closed.

Designing Robust Software Solutions

20 (74)

© Neoxen Systems

4.5.5 Other Performance Aspects

There are a lot of other performance related issues to consider. Quite
many of them are easy to keep in mind and easy to achieve. For
instance:

 To avoid executing operations, which are not necessarily needed

 To execute operations on locations where they most efficiently
can be executed

 To avoid allocating memory and other resources before they are
actually needed and releasing them in the right time

Some other aspects are not necessarily so obvious, but they can still
have a strong impact on the system performance.

Designing Caches

Properly designed data cache is often something to consider:

 What kind of caches should be maintained and where?

 What kind of caching algorithms should be used?

In the traditional client/server solutions caches implemented in the
client side typically increase the performance drastically. On the other
hand, there is a lot of data that should not be cached. Improper
caching schema might slow down the performance and might
consume quite a lot of system resources. In many cases server side
caches may even decrease the performance or prevent proper
scalability.

However, there might be some critical data, often referred to, that
may increase the performance if properly cached. In these scenarios
intelligent caching algorithms may improve the performance
significantly. Quite often there might also be some session state
related data that should be cached in order to get a persistent
connection.

Designing Robust Software Solutions

 21 (74)

© Neoxen Systems

Designing Initialization Routines

Reasonable amounts of consideration and sense should be used when
designing data initialization and refreshing mechanisms. One principle
is to avoid heavy initialization, loading or refreshing until it is
absolutely necessary. In order to boost the performance, all the
initializations should be as light as possible when a module gets
loaded. It is not desirable to execute heavy initializations ‘just in
case’.

It might be that no other component refers to the loaded data or
module. It is also possible that the data in question gets invalidated
and needs to be reloaded before it is needed for the first time. This
possibility also has an impact on refresh operations. If some kinds of
caches are involved and a cache gets a refresh request, the data
should only be invalidated and usually also freed. The reload itself
should not happen until the data is referred to the next time (just-in-
time reload).

Unnecessary updates may easily happen when object oriented
programming is used improperly. This is especially common when
objects have other objects as members. A typical mistake is to
implement too much in the constructor. This might decrease
performance as objects get created before there is a need to use any
relating data, connection or other information.

Designing Memory Usage

It is quite important to design memory usage efficiently.

 How are large data blocks, containing large number of ‘records’
managed?

 How is memory actually allocated?

It should be clear without saying that the number of memory
allocations and reallocations could drastically affect the performance.
This is simple and easy to verify with timing tests.

For instance, there are typically operations that may return a large
number of result records where the exact number is not known before
allocating memory. A select statement is a good example: next
records are received by subsequent requests until there is no more
data available. It is not possible to define an optimal memory block
size to support all cases. Some statements return only one record and
some statements may return a million records.

Designing Robust Software Solutions

22 (74)

© Neoxen Systems

One method quite often used is to always double the existing block
size. In the end the block is reallocated to the exact size in order to
prevent unnecessary memory usage.

With object oriented approach it is not that simple to use the most
efficient solution. However, there are some questions that should be
asked during the design:

 How many objects may get allocated and constructed implicitly,
when additional objects should not be allocated at all?

 How many allocations may happen and how to maintain
memory blocks so that they do not decrease the overall
performance?

4.6 Storing History Information

In some business areas, such as insurance and telecom, there are
official regulations on what kind of history information should be
stored and for how long. Typically there is a need to store and archive
security information, access logs, transaction logs, etc. Outside of the
regulated areas these capabilities are too often neglected. Backing up
and archiving database data is typically well taken care of, but in
many cases this may not be adequate.

The product design should include a plan how the history information
should be collected and managed:

 What kind of archiving the product should provide and what
kind of support should be provided with utilizing third party
implementations?

 What data should be archived at any one time and what parts of
it could perhaps be archived independently from other data?

 Is the data that should be archived physically located in the
same machine?

There are many ‘hybrid’ business solutions, which utilize both
database and file systems. These kinds of systems cause additional
challenges to software architects. Typically, some of the database
data and related files need to be in synch and archived at the same
time. Furthermore, the related files might be located in different
machines.

Designing Robust Software Solutions

 23 (74)

© Neoxen Systems

4.7 Changing the Foundation

Proper foundation in the original architecture can protect from
unnecessary redesigns. However, from time to time architectural
changes may become necessary. Business directions may evolve
differently than originally expected, or some other external reasons
may require comprehensive modifications.

Changes of this scale typically have impact on the database schema
and to the existing implementation. Changes may be required
because of improving performance or to enable some new essential
features. Some of the design and implementation aspects may require
re-implementation or database conversion between different product
versions.

New technology required in the implementation may require changes
in the architecture. Also the implementation may need heavy rework,
if the foundation architecture changes for one reason or another.

4.7.1 Third Party Components

A typical cause of changes is the third party components or engines
used in the product. If that kind of module is replaced with another
third party component or will be partially replaced with own
implementation, rework cannot be avoided.

It is not uncommon, that third party components set some restrictions
and rules for the product design. These restrictions may have a
drastic impact on product performance or scalability, or they may
hinder implementing new features. Sometimes it is realized that the
reason to change the existing architecture is in the architecture itself.
Maybe the third party component was not an appropriate selection for
the product in the first place.

When planning to replace a third party component the existing
implementation needs to be thoroughly analyzed. It is necessary to
clarify how much of the implementation would need redesigning in
order to support the new environment.

Usually this aspect is already taken into account when selecting the
new third party component:

 However, was the same mistake made again?

 Was it properly investigated?

 Were the possible limitations and future problems the new
component would bring with it verified?

Creating a Professional Development Process

24 (74)

© Neoxen Systems

5 Creating a Professional Development Process

5.1 Development Environment

It is highly recommended that all the developers attending the same
project use the same development tools and same versions with the
same service levels. The tools used should be decided at the
beginning of the project and they should not be changed during the
project cycle.

5.1.1 Microsoft® Windows®

We recommend using Microsoft Visual Studio® in C/C++/C#
development. Currently version 2013 with the latest Service Pack and
version 2015 are certified for usage with Neoxen QX Framework and
therefore recommended. All coding and source code editing should be
done in this environment. Within a development team it is not
encouraged to upgrade to another version without prior agreement.

The editor in Visual Studio has its own indentation schema, which
may be different from other editors. To keep the readability of all the
sources at the optimal level, all the programmers are advised not to
modify the sources with any other editing tool.

5.1.2 Linux/UNIX

The core components of Neoxen QX Framework support 32/64-bit
Linux and many flavors of 32/64-bit UNIX. However, the commercial
version is officially certified for Microsoft Windows platforms only.

5.2 Software Builds

Term ‘Build’ is used to describe the physical process of creating a
software product. The process contains the Configuration Management
System (CMS), a dedicated computer for creating the software
product and separate command line tools and utilities for the actual
build process.

For a professional ‘Build’ it is characteristic that the source code gets
marked consistently with logically incremental version numbers, the
process is as automated and unattended as possible and it can be
repeated any time afterwards.

Creating a Professional Development Process

 25 (74)

© Neoxen Systems

5.2.1 Configuration Management

Also for these reasons CMS, often also referred to as Version Control
System, is an elementary component of a professional build system.
Naturally there are many other important reasons for using a CMS
system as well, such as concurrent development, conflict
management, quality control, concurrent branches, change history,
etc. For further details, please refer to the documentation of your
chosen CMS.

Old wisdom says that it does not matter which CMS you use, as long
as you use one. This is really true in a sense, that any CMS is better
than no CMS at all. However, there are some aspects that might
influence your decision on choosing your CMS platform. If you develop
only for Windows, Microsoft Visual Source Safe may be a sound and
solid option. However, if you believe you might need better support
for other operating systems, such as Linux, some other alternatives
might be more suitable. There are many commercial and open source
alternatives available.

Neoxen QX Framework can be used with any of the widely used
Configuration Management Systems. CVS and SVN are perhaps the
most widely used Configuration Management System in the world. For
instance, majority of the open source development, such as Linux,
Apache, KDE, Gnome, etc. is done with CVS or SVN. Another
important benefit is that it runs in almost any viable operating
system. However, any of the commercial systems, such Microsoft
Team Foundation Server is a good choice.

5.2.2 Build Machine

For creating the software product it is highly recommended to have a
dedicated computer, often referred to as the ‘Build Machine’.

The build machine should have a fully documented operating
environment containing only the selected software and components
required for building the product. This is often referred to as a ‘Clean
Environment’.

5.2.3 Build Process

The actual Build process is often referred to as a ‘Build Engine’. In this
sense it typically means the source code tree with the relevant make-
file hierarchy. There should be a dedicated person who is in charge of
the build process. The person with this special responsibility is
sometimes referred to as the ‘Build Master’.

Creating a Professional Development Process

26 (74)

© Neoxen Systems

The product sources are stamped with the version number and they
are checked out from the CMS into the cleaned build machine. It is
recommended, that the version numbering should contain at least
three double digits (major version, minor version, build number), such
as 10.56.12. At least the build number should always be incremented
in every build.

A complete product build should result in the delivery of media
contents. This means, that all the components for the product should
be built within the same build process, including documentation,
readme files, everything. Typically, this means that the automated
build process produces the product CD/DVD contents as the final
output.

5.2.4 Build Tools

Visual Studio conveniently generates make files to be used with its
own nmake-utility. This is nice and simple, but not necessarily useful
for a professional software build process, especially in multiplatform
environments. There are many good reasons to separate the
development environment and official build utilities. In small projects
this may not be an issue, but when the project grows and the amount
of modules increases, the value of the separation is imminent.

In Visual Studio the native make files are part of the living code base.
In small projects this is an advantage, as they do not need manual
maintenance. In larger projects and product development, this
advantage turns into a burden and a constant issue for quality control.
Every build should be repeatable at any time exactly as it was during
the original build. Also the Build Engine should remain subject to
intentional changes only. When the product has a larger user base
and there are customers with different released versions, importance
of these details may turn out to be crucial. This is especially
important, if there are long-term customer commitments,
maintenance agreements, etc.

Neoxen QX Framework provides a superior solution for this
shortcoming. The product takes advantage of Gnu’s make-utility
(qxgmake.exe) with some modifications made by Neoxen Systems.
There are plenty of benefits in using external tools for the Build
Process, on top of those mentioned above. In today’s fast evolving
business environment support for other operating systems, including
Linux, is something you should not ignore.

Creating a Professional Development Process

 27 (74)

© Neoxen Systems

A professional Build Process should:

 Support multiple operating systems without any major
modifications

 Prevent unintentional changes to make files

 Support scripting, environment variables, substituting and other
control mechanisms

Neoxen QX Framework provides all this together with ready-made
templates for building a complete, professional and high quality multi-
platform Build Engine.

Source Code Tree Recommendations

28 (74)

© Neoxen Systems

6 Source Code Tree Recommendations

6.1 Overview

Whenever a development project contains more than a few source
files, the project should be built around a logical file system tree.

Traditionally for multi-platform compatibility reasons it is
recommended, that all the files in the project should respect the 8+3
notation and all the names should be in lower case.

Visual Studio project workspace for each module should be created to
the module’s project directory. All references to directories located in
the source tree should be defined using relative paths.

Output directories for object files, binary files, library files and all
other files generated during compilation and linking process should be
created to a pre-agreed location. Output files should never be
compiled into any part of the source tree hierarchy. Often the output
directory and the source directory are located in different drives,
especially when producing release builds.

Subcontractors or other partners participating in the project who do
not have direct access to the version control system should still map
their tree structure according to the agreed convention. The sources
are checked regularly and building a new project workspace or
adjusting it each time is waste of time and money.

When building modules outside the Visual Studio using make files the
output directory should be specified with an environment variable. In
that case output directories can be freely chosen. Official release
builds are always built using make files, scripts and command line
tools in an automated process.

The directory structure of Neoxen QX Framework installation is
described in Diagram 1. The source tree subdirectory structure for all
the modules is documented in Diagram 2. The output directory
structure is documented in Diagram 3.

Source Code Tree Recommendations

 29 (74)

© Neoxen Systems

6.2 Configuration Management

SVN (Subversion), typically maintained in Windows 2012 Server R2,
Windows 2016 Server or Linux, is used as a source code version
management example in this manual. The SVN-specific version
control files are located in SVN directories in every workstation. These
directories and their contents are automatically maintained by the
version control system. These files must be left untouched and they
should not be deleted.

Figure 1
This diagram illustrates the high level hierarchy of the Neoxen QX Framework installation directory and the
structure of the recommended source code tree. The module specific hierarchy is described in Diagram 2.

Source Code Tree Recommendations

30 (74)

© Neoxen Systems

Figure 2
This diagram illustrates the recommended source code structure for each module. The Build directories
contain ready-made make-file skeletons for your convenience.

Figure 3
This diagram illustrates the output directory structure for Visual Studio project compilation.

6.3 Workspace Settings in Visual Studio 2015

When a new development project is established, the process starts by
creating the standard directory structure and the Project Workspace in
Visual Studio.

If the project is about to use MFC, static linkage is not recommended.
This setting is defined in the ‘<Project> Property Pages-
Configuration Properties-General’ page. The paths for the
intermediate files and for the resulting binaries are defined in the
same page.

NOTE: Always use relative instead of absolute paths. All the
paths should be relative to the directory which
contains the project workspace files. Use the Visual
Studio internal variables as much as possible.

Source Code Tree Recommendations

 31 (74)

© Neoxen Systems

6.3.1 C/C++ Settings

The ‘General’ page contains the item ‘Additional Include
Directories’. The correct paths for project specific header files should
be added here.

If the project is using MFC, the following addition should be used. In
the ‘Preprocessor’ page in the ‘Preprocessor Definitions’ you should
add _USRDLL definition.

6.3.2 Linker Settings

If the project contains any of those Windows import libraries, which
are not in the default list, they should be added through the ‘Input’
page. This page should be used only for compiler-specific import
libraries and Neoxen QX SDK libraries.

6.3.3 Resources Settings

If the project contains custom resources or hand written headers for
the resources used, the additional paths should be defined through
the ‘General’ page in the ‘Additional Include Directories’ setting.

General Formatting Guidelines

32 (74)

© Neoxen Systems

7 General Formatting Guidelines

7.1 Source Code Readability

Code readability and formatting in general are much more important
than someone might expect. In order to save time in code reviews
and to help other developers getting acquainted with the code with
less effort, the code should be ‘airy’ and easy to read. Tight writing is
not same as tight coding.

Comments inside the code are required only to describe the logic of
the code or to describe a ‘catch’ or special usage of some standard
elements. Commenting as well as naming convention is discussed
more in detail later in this guide.

7.1.1 Tabs and Spaces

‘Hard tabs’ should not be used in any event. Spaces should be used
instead. By default, Visual Studio presents hard tabs with 3 spaces.
However, this is a configurable option. In other environments this
varies depending on the platform and the editor used.

With Neoxen QX Framework hard tabs should be expanded to 3
spaces. This setting must be set in Visual Studio via ‘Tools-Options’
menu at the ‘All Languages-Tabs’ page. Also ‘Insert spaces’ option
should be selected in order to avoid hard tabs.

General Formatting Guidelines

 33 (74)

© Neoxen Systems

Figure 5
This screenshot displays the Visual Studio 2015 Text Editor All Languages Tabs Settings.

7.1.2 Positioning of Braces

How should the block braces be used? This is a question with two
definite answers, depending on whom you ask it. However, with
Neoxen QX Framework the left starting brace of a block is always
recommended to be positioned on its own line.

The position of the ending brace must correspond to the starting
brace.

General Formatting Guidelines

34 (74)

© Neoxen Systems

Note: In if- and else-statements and in loops, the block
braces should always be used, even if it contains
only one instruction. This clears the code and eases
future updates and modifications.

7.1.3 Line Length in the Source Files

Line length in source code files should not exceed 80 characters. This
helps to keep the code readable in different screen resolutions.

7.1.4 Size of a Logic Block, a Function and a File

Naturally there are no strict rules for these issues, just some general
common sense recommendations.

If a logical block (if-else, loop, etc.) does not fit into a visible area in
the Visual Studio editor, it might be wise to rethink the logic. Switch-
case statements are typical exceptions.

The same guideline may, in some respect, be valid for functions and
methods as well.

File sizes should be kept reasonable. Thousands of lines of code in a
single source code file should raise some doubts on modularity.

7.2 Function Prototypes

Following example illustrates the format of a function declaration:

Function prototypes should not be introduced ‘on-the-fly’ or in the
beginning of a source code file. In order to make the source code level
quality control easier, all the prototypes should be placed in header
files. Prototype formatting is recommended to be according to
following principles:

 Function parameters are placed in the left side of the source
code page

DWORD QXAPI QxMyOwnGetString

 (

 LPTSTR lptstrReturn, // o - Address of the buffer for a string

 DWORD dwBuffSize // i - Size of the buffer

);

General Formatting Guidelines

 35 (74)

© Neoxen Systems

 Starting three spaces from the margin

 Each parameter is placed on its own line

 Each parameter is followed by a comment

 The comments using C++ -style commenting start with:

 i (input)

 (output)

 io (both input and output)

The input-output marker should be followed by a short description of
the variable.

Generally the parameters should be in a following logical order:

 Input parameters

 Output parameters

Note: However, if the output parameter requires an
additional parameter describing the storage
allocation for it, it can appear after the output
parameter. Look at the sample above.

7.3 Calling Functions with Multiple Parameters

When a function with multiple parameters is called, the parameters
should all be placed in separate lines and vertically aligned. Short
parameter lists can be either on a single line or each in their own line.
‘Mixed mode’ cannot be accepted.

The formatting style used in the above sample is very useful for
documenting special usage of some variables and highly
recommended for all lower level functions.

MessageBox(hwnd,

 lptstrMsg,

 lptstrTitle, // Parameter usage can be commented

 MB_OK);

General Formatting Guidelines

36 (74)

© Neoxen Systems

7.4 Declaring Variables

For the sake of readability and maintainability all variables should be
declared on separate lines. Also the documentation issues may insist
this convention:

Note: All the pointers should be initialized when they are
introduced.

In C++ code it is not a good habit to introduce variables on the fly.
This approach easily leads to unnecessary variables, which may turn
to unused variables as time goes by. Good housekeeping and
discipline pays back in the long term. All the local variables should be
introduced in the beginning of function or method. Local block-scope
variables are the only exceptions.

LPTSTR lptstrNetBuf = NULL; // Buffer returned by API

LPTSTR lptstrParams = NULL; // Buffer for the dynamic parameters

General Coding Guidelines

 37 (74)

© Neoxen Systems

8 General Coding Guidelines

8.1 Using Global Variables

Global variables always form a risk and a concern. Multithreading and
multiple processors only work well with global variables if their usage
is properly planned. As the old wisdom says, usage of global variables
should be minimized and parameter passing should be favored
instead. Perhaps global variables cannot be totally avoided, but when
used, the scalability and consistency aspects must be well designed in
advance.

The overall schema for using global variables should already be
decided during the software design stage:

 What kind of data should or could be kept in project scope
global variables and which is to be placed in file scope global
variables?

The main principle is that project scope global variables should be
completely avoided and file scope global variables used instead, if
necessary.

8.1.1 Multithreading

Accessing global data most often requires thread locking to enable
usage in a multithreaded application as well. Accessing the global
data only in the scope of a single file also encapsulates lock
management for the data into a single file. This approach helps to
avoid the most typical synchronization bugs.

8.1.2 Multiple Processors

Also for scalability reasons, global data cannot be recommended. This
is especially true in multi-processor/multi-core computers. Operating
systems multitask threads, not processes. In a multiprocessor
computer this means that different threads of the same process can
be run in different processors. Accessing global data from different
threads running in different processors always causes an unnecessary
context switching. What this means is, that a badly designed
application using global variables can lose some of its performance in
a multiprocessor computer.

General Coding Guidelines

38 (74)

© Neoxen Systems

8.1.3 Naming Convention

However, if global variables need to be used, special consideration
should be paid for their naming convention. Using the same name for
a project scope global and file scope global is strictly forbidden. All the
names of global variables should be prefixed in consistent and unique
manner. It is recommended to use g_ as a prefix for project scope
global variables and g in file scope.

All the project scope global variables must be introduced with
extern modifier in a single common header file. Introducing is done
without initialization of the variables. Later on when taken into usage,
all global variables of this type should be declared for usage, always
with initial values, in the beginning of a single source code file. This
file typically contains the project entry point.

Note: Variables which are designed to remain file scoped
should never use the extern modifier.

8.2 Using Static Variables

As with the global variables explained earlier, special notice has to be
put on static variables as well. They should be avoided in the same
manner. Especially dynamic link libraries and static variables can be a
very error prone combination. This is because of the way static
variables are stored in memory.

When a shared library is loaded and a static variable internal to a
function receives a new value, the value remains valid as long as the
object code (single source file) is in the memory. This happens even if
the function containing the static variable is exited. In practice this
can cause several strangely appearing error conditions.

8.2.1 Multithreading and Multiple Processors

Without locking mechanisms static variables are not thread safe. In a
manner similar to the global variables, static variables do not scale
properly in multiprocessor computers.

General Coding Guidelines

 39 (74)

© Neoxen Systems

8.3 Initializing Variables

We should always use initialized variables. Sometimes it may look
unnecessary, but we should always remember the fact that code
‘lives’. For the sake of future maintenance, it is a highly
recommended way to protect our code from future bugs.
Implementation of initial values is discussed in the context of
constant values.

8.3.1 Using Constants

All constant values and literals should be defined in an appropriate
header file. ‘Hard coding’ should not be accepted.

8.3.2 Reusing Constants

In order to keep the program logic under control and to decrease the
expenses in maintenance, reusing constant definitions for different
logical purposes should not be accepted.

Sample:

In the sample above, the actual values of the definitions happen to be
exactly the same, but they are logically used to completely different
purposes.

If there is a definition, let us say for 256, in some of the header files,
that particular definition should be used for one logical purpose only.

General Coding Guidelines

40 (74)

© Neoxen Systems

8.4 Using Strings

8.4.1 Standard C Library Functions

Copying and concatenating strings is a typical source of ‘hidden’ bugs.
Especially strcpy() and strcat() are infamous examples of standard
library functions, which should be avoided as carefully as possible.
These kinds of functions should not be used, if the allocated size of
the strings is not explicitly known.

Furthermore, if a function receives parameters of any string related
data type, none of the above mentioned functions should be used
without explicit pointer validation.

In case of concatenation, special care should be taken that the
combined actual length of the strings does not exceed the storage
allocation of the target buffer.

Visual Studio 2005 implemented new safer buffer manipulation
functions, which should be used.

8.4.2 Localization Support

Generally, none of the platform specific or ANSI C string functions
should be used directly. Large portions of those functions support only
single byte character sets and are therefore not suitable for proper
localization. The Neoxen QX Framework provides string manipulation
functions and macros, which are cross-platform compatible and also
support multi byte character sets.

8.4.3 Pointer Arithmetic

In the old times of DOS and Unix programming in plain C, pointer
arithmetic was a widely accepted and encouraged method to achieve
short and efficient code.

However, the requirements of modern 32/64-bit programming are
different. Minimizing the ‘hidden’ costs of the development cycle and
especially maintenance costs are one of the top priorities, especially
in the application level. Also, overall code stability is one of the
essential requirements.

General Coding Guidelines

 41 (74)

© Neoxen Systems

Especially with strings the pointer incrementing and decrementing in
the traditional way is not a proper way to code. We have to remember
that in multi byte character sets one character can be one or two
bytes in size. In Unicode each character takes two bytes.

In general, excessive use of pointer arithmetic is not encouraged. The
only exception is in the low level code, where performance
requirements are crucial.

Caution: Programmers should keep in mind, that when
manipulating data received as a pointer, they are
manipulating the original data. This may cause
undesired side effects, if not understood correctly.

8.5 Return Values

When designing a new component, special notice has to be put on the
return values. Consistent and unified return value schema has to be
designed and implemented. Design of the return value
implementation must be carefully thought over before a single line of
code is written.

Utility functions should always return a success indicator as:

 Long integer

 Boolean

 Handle

As a general guideline, if there are no real reasons to return 16-bit
integer values, 32-bit data types are recommended.

If a function is supposed to return a string or other pointers, it should
receive a proper storage pointer as an output parameter. Returning a
string pointer as a return value is not recommended, as it often leads
to “buffer overflow” type of bugs.

Specifically, when a function receives a pointer to a buffer as an
output parameter, it must be accompanied with a parameter
specifying the size of allocated storage.

General Coding Guidelines

42 (74)

© Neoxen Systems

When using integral return values, value defined as 0 is regarded as
an indicator of successful operation.

Return values should always be defined in appropriate header files
with descriptively defined names. This is discussed in more detail
later in the context of naming conventions.

Applications that use Neoxen QX Framework API calls or their internal
utility functions should explicitly handle the return values. A switch-
case structure is the preferred method.

8.6 Error Handling

Error management starts from the design of the return value schema,
as described previously. The main principle should be that if an API
library function terminates with error, it should set the error code and
message using error management functions published in QXERR.H. In
most cases the failing function also returns the error code. The last
error in the thread is only set if the function fails.

The last error can be set in two different ways. The first way is to set
the error and overwrite the previous last error code and message.
Another way is to extend last error. Extending the last error makes
sense when the reason for the unsuccessful operation is the failure of
another module function call and an error message is already set.

The application using the Neoxen QX Framework API calls is
responsible for interpreting the codes.

DWORD QXAPI QxMyGetString

(

 LPTSTR lptstrReturn, // o - Returns a pointer to a string

 DWORD dwBuffSize // i - Allocated size for the buffer

);

General Coding Guidelines

 43 (74)

© Neoxen Systems

Figure 6
Special notice has to be put on the program logic. Error handling should be done in the highest possible
level in the logic hierarchy. Utility functions should be designed to be as generic as possible and the
responsibility of interpreting their return values should be taken care of by the high level functions.

8.6.1 Validating Parameters

All the mandatory parameters should always be validated. If a
mandatory parameter is not valid, the code should not continue.

Logical Checking Order

Checking may not necessarily be done in the same exact order in
which the parameters exist, but rather according to their logical order.
Output parameters should be checked first and initialized if required.
Then the rest of the parameters are checked, usually in the order they
appear. The input parameters requiring more logic in checking, or
which are validated by a separate function call, are checked last.

Pessimistic Checking Order

In many cases it is far more efficient to test for failure rather than
success when checking return values of function calls. It also shortens
the code and increases code readability.

Testing the success of a call leads easily to multiple levels of if-
statements and makes the logic of the code more error prone, harder
to read and more time consuming to maintain.

General Coding Guidelines

44 (74)

© Neoxen Systems

Instead, the programmers should consider each call in a ‘pessimistic’
way:

WHY CONTINUE, IF THE CALL FAILED?

This attitude often clarifies the program logic thus making it more
robust against bugs. It saves a lot of effort in maintenance and
therefore may save considerably in the forthcoming development
expenses.

Note: Common sense must be used in the checking order.
In some cases there may be a situation, where
every exit point requires multiple cleanup actions. In
this kind of situation, optimistic checking order may
produce better code.

Note: In general, ‘goto’-statements should not be used.

8.6.2 Validating Pointers

If a function receives pointers as parameters, they should always be
validated carefully. The only exception is when a NULL pointer is
specifically allowed.

Neglecting pointer validation leads sooner or later to undetermined
instability of the software therefore raising the overall expenses of the
development and especially maintenance.

General Coding Guidelines

 45 (74)

© Neoxen Systems

8.6.3 Structured Error Handling (SEH)

All functions should take care of their parameter validation, as
described. The try-catch blocks are used when the execution can
cause an exception. For example, all callback functions should be
executed within a try block.

General Coding Guidelines

46 (74)

© Neoxen Systems

All modules should be implemented so that stability is one of the
fundamental requirements. One thing to remember is that a NULL
check does not validate a handle or a pointer. Appropriate SEH blocks
should be used when objects are referred using handles or pointers
that are passed as parameters for exported functions. All statements
that might cause exception (like _stprintf when the format string is
not fully validated or _tcscpy when the destination buffer is received
as an input parameter) should also be executed using a SEH block.

If a function causes memory overwriting, then SEH block does not
necessarily protect the running application. The severity of the
possible damages depends on the destroyed contents of the
overwritten memory area.

The SEH block implementation in Neoxen QX Framework expands to
try – catch statements only in release builds. On debug builds the
SEH Blocks always expand to if (1) - else statements. This prevents
unintentional “protection” of code blocks in debug builds so that
possible bugs are easier to locate.

Note: Please do not use platform or compiler specific try-
catch mechanisms. Neoxen QX Framework
implements a consistent Structured Error Handling
mechanism, which supports both C and C++.

8.7 Using Macros

The major difference between macros and functions is the fact that
macros do not have “runtime addresses” as functions do. This is due
to the fact that preprocessor replaces the macro with the real contents
before compilation. For these reasons macros cause slight overhead
during compilation, but typically may execute faster than function
calls.

For this very same reason you cannot easily replace an exported
function in your own library with a macro having the same name and
syntax. If you do so, you need to re-build all the applications that
have been using that function.

All the preprocessor definitions are macros. Therefore, we could say
that we heavily rely on them. However, there are quite remarkable
differences in acceptable and unacceptable usage of macros.

General Coding Guidelines

 47 (74)

© Neoxen Systems

Constants should always be defined to have descriptive names as
described elsewhere in this guide. This is an acceptable approach and
highly recommended.

For the sake of readability and maintainability, excessive use of
custom macros as replacements for functions is usually not quite
acceptable and is strongly discouraged.

You should not implement a macro which hides function exit points.
This easily leads to maintenance problems when the code base grows
in size.

There are some areas where macros are useful, but their usage should
be well designed before implementation. For instance, if there is a
message-oriented interface to certain functionality, it might be
convenient to create a function style macro set for increasing the
usability.

8.8 Memory Management

Current programming trends may not emphasize proper memory
usage as much as they perhaps should. It is a misleading approach to
consider memory usage optimization as a ‘shadow from the past’.

8.8.1 Desktop Applications

For a standard desktop application, it might not be such a crucial
issue, as long as the memory usage related bugs are eliminated. This
category of applications is typically used only for a certain period of
time before they are closed. Good programming practices and
common sense are typically adequate for ensuring reasonable
memory usage and performance.

8.8.2 System Software

For system components and serving modules of business applications
this approach is typically inadequate. This kind of software should be
able to run 24 hours a day and seven days a week without affecting
the system’s stability and responsiveness. If these applications are
transaction intensive or serving a larger amount of concurrent users,
the memory management requirement may become one of the most
important aspects. Careless design can easily lead to memory
fragmentation and decrease system robustness drastically.

General Coding Guidelines

48 (74)

© Neoxen Systems

8.8.3 General Recommendations

There is a performance difference with the standard memory
management functions (malloc, calloc, realloc) and typically memory
reallocation is recommended when appropriate. Windows API has also
a set of memory management functions, typically suitable for client
side programming.

As a general guideline, all allocated memory should be freed in the
same place where it was allocated. Otherwise a proper allocate-free
function pair should be implemented.

Neoxen QX Framework provides general memory management
functions, which are recommended to be used whenever applicable.
They are designed to be cross-platform compatible and optimized for
efficiency and safety.

8.8.4 Storage Allocation

Static storage allocation is the most commonly used, simple and easy
way for introducing buffers, such as strings. There are drawbacks
however. If this approach is widely used, it may cause increase in
maintenance expenses during the product life cycle. Also, if the
storage sizes used are too small, they may limit the software’s
usability. If the storage sizes are too large, memory usage can be
highly inefficient. This scenario may cause memory fragmentation and
scalability problems.

Dynamic storage allocation should be preferred in order to avoid the
problems mentioned.

If static allocation is used, it is not recommended to use values, such
as 256, directly. Should there later be a need to change a commonly
used allocation size, it might be tedious to find all the correct
occurrences to change. If some are missed, a possible bug is
introduced.

Luckily, there is a very simple solution to this problem. All such
constants should have a human readable definition in an appropriate
header file.

General Coding Guidelines

 49 (74)

© Neoxen Systems

Note: In sample above sizeof() is used instead of hard
coding. It is recommended to avoid direct constant
usage wherever possible.

Compiler and Linker Warnings

50 (74)

© Neoxen Systems

9 Compiler and Linker Warnings

When Visual Studio is used as the preferred development
environment, compiler warning level should be kept at level 3. All the
compilations with this level should be kept clean. This means that no
warnings during compilation or linking should be allowed.

It is good programming practice and good housekeeping to clean out
all the warnings. Preventing unnecessary warnings increases the
product quality and saves time in maintenance as some of the
warnings actually reveal hidden bugs.

The 64-bit portability issues should be taken into serious concern,
when using Visual Studio 2005. The ‘Detect 64-bit Portability Issues’
setting (/W64) should always be set to ‘Yes’ in the project C++
properties. If Visual Studio 2008, 2010, 2012, 2013 or 2015 is used,
this definition should not be used. Since Visual Studio 2008 it is
deprecated and causes a compilation warning.

9.1 Using Explicit Typecasting

To avoid typical warnings of incompatible parameter types and in
order to ensure proper byte alignment, explicit typecasting is highly
recommended. Microsoft’s 64-bit compiler treats most of the missing
typecasts as errors. Typecasting is the preferred method to direct the
internal code optimizer for proper byte alignment for different data
types.

9.2 Using VOID Parameter with C Compiler

If the project is compiled with the C-compiler instead of C++, the
following function prototype is strictly forbidden. This is also the case
if the function is exported from C++ under extern “C” modifier.

Instead:

Compiler and Linker Warnings

 51 (74)

© Neoxen Systems

This is due to limitations in parameter validation. If the function
prototype is of the previous type, it can be called with parameters
without compiler warnings. This may lead to mysterious error
situations.

9.3 Using #pragma Directives

The typical mechanism to prevent some warnings in purpose is using
preprocessor directives, such as #pragma. This is a useful
mechanism, if used carefully, and in well-documented special cases
only. If it is utilized loosely to hide peculiar coding practices, it is very
likely to cause the increase of maintenance costs in the future.

Using Resource Files

52 (74)

© Neoxen Systems

10 Using Resource Files

10.1 Resource Symbols

Windows API still internally handles resource item identifiers as
strings, i.e. names. Even though it is possible, it is not recommended
for programmers to use resource names. The resource items should
be given an environment independent resource ID as an integer
value.

10.2 Version Information

According to professional Windows programming guidelines, each
binary module should have a Version Info resource block.
Appropriately designed contents of the block with product names,
descriptions, version numbers, trademarks and copyright notices
clearly indicate the professionalism of the vendor.

10.2.1 Traditional Approach

Visual Studio has an integrated and easy to use resource editor.
Creating and maintaining resources, including version information is
smooth and simple. It is just a perfect tool for small projects.
However, there is a drawback when the project grows and the amount
of modules increases.

In larger software projects, the manual maintenance of version
information can become cumbersome, time consuming and error
prone. Professional software build process needs more advanced
mechanisms.

10.2.2 Neoxen QX Framework Approach

In order to enable automated build processes and minimize effort and
human errors, Neoxen QX Framework offers an extension to the
traditional management of version information blocks.

The project templates delivered with Neoxen QX Framework contain
additional resource files for this purpose. The mechanism provided is
fully compliant with Microsoft tools and it offers an intelligent option
to centralize all version information of all modules in a single header
file. Please refer to Neoxen QX Framework technical documentation
for further details.

Commenting Source Code

 53 (74)

© Neoxen Systems

11 Commenting Source Code

There are many good practices for commenting source code.
Whatever the guidelines are, they are appropriate, if they are
reasonably adequate, consistent and systematically used.

The following chapters describe the commenting style and guidelines
used in Neoxen QX Framework and the included templates and
samples.

11.1 What to Comment?

11.1.1 File and Block Comments

All source code should be commented in the file level and in the
functional level. Each file, except the files maintained by the
development environment, should start with a descriptive comment
block. Each function, class, method, etc., should have its own
descriptive comment block as well.

In Neoxen QX Framework all the following files have their own
variation of file level comment blocks:

 Source code files

 Header files

 Module definition files

 Make files

 Version Info resource files

Also the following have their own variation of comment block:

 Functions & Methods

 Class declarations

The variation between comment block types is minimal as far as
formatting is concerned. Otherwise the content reflects the purpose.

Note: Please refer to the documentation provided with the
Neoxen QX Framework templates for up-to-date
information on the comment block contents.

Commenting Source Code

54 (74)

© Neoxen Systems

11.1.2 Implementation Comments

This category of commenting has two variations. In the header files
there should also be short comments separating logical entities, but
the main usage should be functionality related.

Implementation comments are used within functions and methods.
Also the comments describing variables, structure or class members
and other similar descriptions belong to this category.

Comments should give some real value to the reader. It is better to
leave comments out, than write useless or misleading descriptions.
The best approach is to write short comments describing the logic,
special conditions and exceptions to the established coding guidelines.
Discipline and common sense are the key elements.

Note: Please refer to the documentation provided with the
Neoxen QX Framework templates for up-to-date
information and samples of implementation
comments.

Naming Convention

 55 (74)

© Neoxen Systems

12 Naming Convention

Naming Conventions used in traditional UNIX programming are
typically different compared to Windows. Linux/UNIX developers tend
to use lower case without variable prefixing, C standard library style
functions, lower case data types, etc. Native Windows code tends to
use different naming convention. Variation of Hungarian notation is
preferred, data types are capitalized, function and variable names are
long and descriptive in mixed case, etc.

Too often it can be noticed that Linux/UNIX programmers disapprove
the Windows coding style and Windows developers deprecate
traditional Linux/UNIX coding style. Nevertheless, there are good
aspects in both. The fact is that any coding style and naming
convention can be good, as long as it respects professional coding
practices, is consistent and is systematically used.

Due to its origin Neoxen QX Framework follows more closely the
Windows coding style and naming conventions with some systematic
modifications. The following chapters describe it in more detail.

12.1 Hungarian Notation

All the variable declarations in the header and source files are
recommended to follow Neoxen QX Framework variation of the
Hungarian notation. This means, that the variable names should start
with a lower case prefix, which is derived from the data type of the
variable.

There are good reasons to favor Hungarian notation. If it is used
systematically, it can assist in producing robust code. Unintentional
unsigned/signed mismatch problems as well as questionable
assignments, comparisons and suspicious type casts can easily be
seen from the code.

12.1.1 Simple Data Types

Hungarian notation is easy to use with simple data types. The prefix
should be followed with the variable body starting with a capital
letter. For example, variable of type unsigned long could be named:

Naming Convention

56 (74)

© Neoxen Systems

The variable body should be descriptive of the context. Using the
traditional single letter index variables (i, j, k, etc.) is not encouraged.

Please refer to Appendix II for a list of recommended prefixes.

12.1.2 Complex Data Types

Neoxen QX Framework naming convention is not so strict with
complex data types. When naming variables of complex data types,
the data type name or an abbreviation of it in lower case can be used
either as a prefix or as the entire variable name, like:

Note: Development in Windows with C++ and MFC, as
well as with C#, should follow the Microsoft
proposed naming convention.

12.1.3 Using Data Type Definitions

Structures and unions should always be defined as complex data
types. This allows much easier code maintenance in the future.

Following format is recommended:

Note: Please notice that data types should always be
defined with CAPITAL LETTERS.

MSG msg

PAINTSTRUCT ps

RECT rectUpd

Naming Convention

 57 (74)

© Neoxen Systems

12.2 Naming String Pointers

String pointers have their default prefixes according to their actual
data type. It is strongly recommended to use precise prefixes
according to the exact data type. This is especially useful, if the data
type relates to UNICODE or has a constant modifier.

Declaration Explanation

LPSTR lpstrText Pointer to a null-terminated ANSI string

LPCSTR lpcstrText Pointer to a constant null-terminated ANSI string

LPTSTR lptstrText Pointer to a null-terminated ANSI or Unicode string

LPCTSTR lpctstrText Pointer to a constant null-terminated ANSI or Unicode string

LPWSTR lpwstr Pointer to a null-terminated Unicode string

LPCWSTR lpcwstrText Pointer to a constant null-terminated Unicode string

Note: LPTSTR and LPCTSTR are the default data types to
be used. Always prefer the string data types defined
or recommended in the Neoxen QX Framework.

12.3 Naming Functions and Methods

Function and method names should be descriptive, in mixed (Camel)
case and long enough to be as self-explanatory as possible.

Naming convention should be standardized and consistent through the
whole code base. Names of the functions or methods should be
unified within each module.

12.3.1 Using Module Prefixes

Each module should have its own unique two to four letter prefix and
all the functions/methods within a module should use this same prefix
consistently.

Sample:

AxgMyFunction()

AxgYourFunction()

AxgOtherFunction()

Naming Convention

58 (74)

© Neoxen Systems

12.3.2 Using Logical Groups

The method and function names should be created so that they are
logically grouped forming a consistent set of names. In practice this
means that the target part of the name (object) is given first and then
the action part (verb)

Sample:

12.4 Naming Constants

Constants should be defined with descriptive names, which are always
in UPPER CASE. Underscores are allowed and recommended if
readability so requires.

Constant definitions should be grouped in the header files with
appropriate comments:

AxgLogicalTreeCreate

AxgLogicalTreeGetProperties

AxgLogicalTreeSetProperties

AxgLogicalTreeDelete

Exporting Functions

 59 (74)

© Neoxen Systems

13 Exporting Functions

13.1 General Guidelines

When a module is designed, there should be a consistent approach on
what to export and how. What should be accessible from outside and
what should be kept internal? There should not be any reasons to
allow access to internal data directly. It should be encapsulated inside
the module and all manipulation should be done via function calls.
This approach is quite object-oriented and recommended regardless of
the programming language used.

13.2 How to Export?

There are some variations on how to export functions and variables
from a module. You can export from both executables and libraries.
Some of these mechanisms are Microsoft specific and are not
recommended. The generally accepted standard mechanisms should
be favored.

All the variations described in the following chapters can be used
within the same module. However, it is recommended to standardize
into one mechanism and use it consistently in all the development
projects.

13.2.1 Using Microsoft Specific Storage-class Modifiers

The dllimport and dllexport storage-class modifiers are Microsoft-
specific extensions to the C language and not recommended.
However, these modifiers explicitly define the library interface to its
client. Declaring functions as dllexport eliminates the need for a
module-definition (.DEF) file. These modifiers can also be used with
data and objects.

The dllimport and dllexport storage-class modifiers must be used with
the extended attribute syntax keyword, __declspec:

Exporting Functions

60 (74)

© Neoxen Systems

13.2.2 Using Module Definition Files

A module definition (.DEF) file is a text file that contains statements
for defining an executable or a library. For standard executables there
is typically no need for creating such a file, as the linker provides
equivalent command-line options for most module definition
statements.

However, exporting functions via a module definition file is the
mechanism recommended with Neoxen QX Framework programming.

In the exports sections of a module definition file, the functions can
be exported by name and by ordinal number. Exporting by name is
the most often used method, but there are benefits in adding the
ordinals as well. The ordinals are also unique identifiers and another
mechanism for locating the functions.

13.2.3 Using /EXPORT Specification

The exported functions can also be defined with a command line
switch given to the linker. Even though supported, this is perhaps the
most rarely used mechanism. Typically, there are no particular
reasons to favor it.

Caution: Whether you export by name or by ordinal, you
need to understand one fundamental aspect. Once
published, you should never change the name or
ordinal. If you do, the existing applications may
cease functioning, as they cannot locate the function
they are looking for.

Exporting Functions

 61 (74)

© Neoxen Systems

13.2.4 Calling Conventions for Exported Functions

It is a good programming practice to use an explicit calling
convention, it is especially important with exported functions. This
approach guarantees proper argument handling and stack adjustment.

You are strongly advised to declare your exported functions explicitly
as C-style functions using extern “C” modifier. This approach
guarantees your code is accessible from almost any language capable
of utilizing library calls.

Neoxen QX Framework consistently uses the QXAPI modifier, which
currently defaults to _stdcall. Modifiers such as _stdcall should not be
used directly. It is highly recommended to use definitions to abstract
the actual calling convention.

With QXAPI modifier the arguments are guaranteed to be pushed from
right to left, an underscore is prefixed to the name and the called
functions do some argument checking during link time. The functions
also do their own stack adjustment, when they return to caller.

There are some exceptions when direct declaration with _cdecl can
be used. For instance, in case of vararg function _cdecl is always
used, because the caller must clean up the parameter stack.

Note: Library functions should not be attributed as
_fastcall. Microsoft does not guarantee that the
_fastcall modifier remains the same between
compiler releases.

Exporting Functions

62 (74)

© Neoxen Systems

13.3 Avoiding Multiple Header Inclusion

It is good programming practice and good housekeeping to prevent
the same header files being included multiple times during
compilation. There is a simple mechanism to accomplish this.

The contents of a header file should be placed inside a following
condition:

Typically, the condition marker (__THISHEADER_H__ in the sample
above) is named according to the name of the header file. For
instance, if the file name is PRINTDOC.H, the corresponding marker
could be __PRINTDOC_H__.

Solving Problems

 63 (74)

© Neoxen Systems

14 Solving Problems

14.1 Switching from Debug to Release Build

Typically, most programmers develop and test their project in debug
mode. After they consider the software to be adequately ready they
create a release build and retest. It is far too common, that this is the
point where the actual detective work starts. The debug version
seemed to work nicely, but the release version crashes with access
violations.

The father of REXX programming language, Mike Cowlishaw from IBM
has said that the first question he used to ask from a young developer
was the experience and capability in debugging. If the answer from
the young interviewee was “good” or “very good”, Mr. Cowlishaw
tended to consider the person as a bad programmer.

This may sound like exaggeration, but there is a valid point.
Unfortunately debug mode seems to encourage some developers to
loose programming practices, like extensive and careless ASSERT
usage. The debug version is very forgiving and kind, but the release
build is not.

The list below shows the primary differences between a debug and a
release build. There are other differences, but the following are the
primary differences that would cause an application to fail in a release
build when it works in a debug build.

 Heap Layout

 Compilation

 Code Optimization

 Uninitialized Pointers

Solving Problems

64 (74)

© Neoxen Systems

14.1.1 Heap Layout

Heap layout is said to cause about ninety percent of the apparent
problems when an application works in a debug, but not in a release
build.

When a project is built for debug, it is using a special debug memory
allocation scheme. This means that all memory allocations have guard
bytes placed around them. These guard bytes are placed in order to
discover memory overwrites. As the heap layout is different between
release and debug versions, a memory overwrite might not create any
problems in a debug build, but may have fatal consequences in a
release build.

When a call to a heap manipulation function causes an access
violation, it is possible that the program has corrupted the heap. A
common symptom of this situation is “Access Violation in _searchseg”.

Note: The _heapchk function is available in both debug
and release builds for verifying the integrity of the
run-time library heap. This function can be used to
isolate a heap overwrite.

14.1.2 Compilation

Microsoft Foundation Classes (MFC) is widely used in C++
programming and it is often used together with Neoxen QX
Framework as well. However, there are some issues to be aware of.
Many of the macros and much of the actual implementation in MFC
changes when you create a release build. In particular, the ASSERT
macro evaluates to nothing in a release build; so none of the code
found in ASSERT statements will ever be executed.

Careless usage of ASSERT macros may easily cause a release version
of an MFC application to crash, return incorrect results, or exhibit
some other abnormal behavior.

This problem can be caused when important code is placed in an
ASSERT statement to verify correct functionality. Because ASSERT
statements are commented out in a release build of an MFC
application, the code does not run in a release build.

Solving Problems

 65 (74)

© Neoxen Systems

One proven technique to avoid this problem is to assign the function's
return value to a temporary variable and then test the variable in an
ASSERT statement.

When peculiar behavior is encountered, it may originate from code
optimization. For instance, some functions are inlined for increased
speed in the release build. Optimizations are generally turned on in a
release build and a different memory allocation schema is also being
used.

Note: If you are using ASSERT to confirm that a function
call succeeded, consider using VERIFY instead. The
VERIFY macro evaluates its own arguments in both
debug and release builds.

14.1.3 Code Optimization

Depending on the nature of certain segments of code, the optimizing
compiler might generate unexpected code. Occasionally this may
cause instability or peculiar behavior especially in a release build.

During optimization, the compiler reorganizes and repositions
instructions generated from the source code, resulting in more
efficient execution of the application. Because the structure after
optimization is rearranged, the debugger cannot always identify the
correct piece of source code that corresponds to a set of instructions.
Therefore, if problems occur, it is advisable to debug the code before
optimizing it. Optimization can then be re-enabled after debugging.

If there is a reason to suspect that a particular portion of the code is
not being optimized correctly and is causing problems in the
compilation or execution of the application, the offending code can be
bracketed with

#pragma optimize("", off)

// Here is the code to investigate

#pragma optimize("", on)

Solving Problems

66 (74)

© Neoxen Systems

14.1.4 Uninitialized Pointers

The lack of debugging information removes the padding from your
application. In a release build, stray pointers have a greater chance of
pointing to uninitialized memory instead of pointing to debug
information.

 67 (74)

© Neoxen Systems

Index

Adjust Processes 10
APIENTRY 61
Archiving 22
ASSERT 63, 64
Backup 22
Backwards Compatible 10
Bandwidth 17
Better Applications 10
Bug Tracking 9
Build Engine 4, 25, 26
Build Machine 4, 25
Build Master 4, 25
Build Number 26
Build Process 4, 8, 25, 26
Business Applications................ 13
Business Level Functionality .. 9, 10
Business solutions 11
C/C++ 7, 24, 31, 50
C++ 10, 36, 46, 56, 64
Caching Algorithms 20
C-language 10, 40, 46, 59
Clean Environment 4, 25
Client/Server 20
CMS 4, 24, 25, 26
Communications 12
Competitive Advantage 10
Components 11, 13, 15, 18, 21, 23
Concurrent Connections 11
Configuration 14
Configuration Management8, 24,

25, 29
Consistent Interface 9
Constructor 21
C-style Functions 2
C-Style Functions 10
Customer Care Services 9
Customer Commitments............ 26
Customer Satisfaction 10
Customizable 9
CVS 4, 29
Data Initialization 21
Data Refreshing 21

Data Transportation 15
Database 12
Databases 19
Designing Robust Software 11
Desktop Applications 11
Development Costs 9
Distributed Systems 11
dllexport 59
dllimport 59
DOS 40, 55
Extern C 61
Globalization 13
Gnu Make 26
Hard Tabs 32
Hidden Costs 8, 9
HTTP 4, 17
Hungarian Notation 55
Increase Efficiency 10
Internationalization 10
Internet 15
Introduction 6
Java 10
JRE..................................... 4, 12
Just-in-time Reload 21
LAN 4, 15
Licensing 9
Linux 12, 24, 25, 26, 29
Load Balancing 18
Localization 10, 40
Macro Languages 10
Make-file Hierarchy 25
Messaging Solutions 17
MFC 4, 30, 31, 56, 64
Microsoft 24, 56, 59
Modular Architecture 9
Module Definition File 60
Multi-layered Architecture 9
Multiprocessing 37
Multithreading 37
multi-tier programming 2
Native Layer 12
Neoxen 5

68 (74)

© Neoxen Systems

Nmake 26
Object Model 19
OS/2 55
Output Directory 28
Persistent Connection 17
Platform SDK 7
Predefined Algorithms 18
Presentation Manager 55
Product Management 9
Project Completion 10
Project Costs 9
Project Management 9
Project Workspace 30
Protocol Stack 12
Proven Foundation.................... 10
Quality Assurance 9
Rapid Development 11
Refine Processes 10
related documentation 5
Reliability 11
Request Queue 13
Robustness 11
ROI 4, 15
Royalty-free 9
Scalability 18
Scripting Languages 10
Secure Network........................ 15
SEH 4, 46
Server..................................... 11
Software Build 24

Source Code Tree 8
SQL .. 4
SQL Statement 19
Stream Socket 13
Stream Sockets 19
Subcontractors 28
Support Costs 10
System Resources 13
Technical Requirements 11
Technical Support 9
Terms and concepts 4

abbreviations 4
terminology 4

Testing 12
Testing Cycle 10
Third Party 12, 18, 22, 23
Threads and Processes 13
Try-Catch 45
Typecasting 50
Unix 40, 55
VERIFY 65
Version Control System 25
Visual Basic 56
Visual Studio24, 26, 28, 30, 32,

50, 52
WAN 4, 15
Web Browser 12
Web Server 12
Windows . 7, 12, 29, 48, 52, 55, 56
Windows API 52

 69 (74)

© Neoxen Systems

APPENDIX I: Data Types

ANSI C-style simple data types should not be used, if not necessary.
For maximum compliance between existing and forthcoming 32/64-bit
versions of Microsoft Windows, it is highly recommended to use the
data types introduced in the Neoxen QX Framework.

Please refer to the Technical Documentation to see the up-to-date list
of recommended data types.

Note: If there is a data type defined in Neoxen QX
Framework header files, you should always use it.

70 (74)

© Neoxen Systems

APPENDIX II: Data Type Prefixes

All the variable declarations in the header and source files should
follow the Neoxen QX Framework variation of the Hungarian notation.
This means, that all the variable names should start with a lower case
prefix, which is derived from the data type of the variable.

Please refer to the Technical Documentation to see the up-to-date list
of recommended data types and respective prefixes.

Note: If there is a recommended prefix for a data type
defined, you are strongly encouraged to use it.

 71 (74)

© Neoxen Systems

DO C U M EN TA TI O N L I C EN S E

This documentation, as well as the software described in it, is furnished under license and may only be used

or copied in accordance with the terms of the license. The information in this document is furnished for

informational use only, is subject to change without notice, and should not be construed as a commitment by

Neoxen Systems.

Neoxen Systems assumes no responsibility or liability for any errors or inaccuracies that may appear in this

document or any software that may be provided in association with this document. Except as permitted by

such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means without the express written consent of Neoxen Systems.

Information in this document is provided in connection with the vendor products. No license, express or

implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"

or "undefined". Neoxen Systems reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them.

T R A DEM A R K S

Neoxen, the Neoxen logo, Trelox, Neoxen QX, Neoxen QX Framework, Neoxen Modus, Neoxen Visual Modus,

Neoxen iModus, Neoxen EveryPlace and Neoxen NaviList are trademarks or registered trademarks of Neoxen

Systems in USA and/or other countries.

Microsoft, Microsoft Office, Microsoft Windows and Microsoft Visual Studio are registered trademarks of

Microsoft Corporation in the United States and/or other countries.

Adobe, Acrobat and Acrobat Reader are either registered trademarks or trademarks of Adobe Systems

Incorporated in the United States and/or other countries. Linux is a registered trademark of Linus Torvalds.

All other trademarks, registered trademarks and/or product names are property of their respective owners.

CO P Y R I G H T

Template from Neoxen Modus Methodology, copyright © 2016 Neoxen Systems.

© 2016 Neoxen Systems. All Rights Reserved.

RESTRICTED RIGHTS LEGENDS

Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph

(c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-7013 or

subparagraphs (c)(1) and (2) of the Commercial Computer Software -- Restricted Rights in 48 CFR 52.227-

19 as applicable.

Unpublished - rights reserved under the Copyright Laws of the United States and International treaties.

http://www.neoxen.com

sales@neoxen.com

http://www.neoxen.com/
mailto:sales@neoxen.com

